Aufgabe:
gesucht eine Funktion, die die folgende Eigenschaften erfüllt:
\( \forall x \forall y \forall z((f(x, y)=z \rightarrow f(z, y)=x) \wedge f(x, y)=f(y, x)) \wedge \exists n \forall x f(x, n)=n \)
Problem/Ansatz:
Hallo
wie wärs mit x^2+y^2+z^2=r^2 jeweils aufgelöst nach z und x
Gruß lul
f ist eine zweistellige funktion daher geht die Funktion nicht
f(5,n) = n ⇒ f(n.n) = 5 , f(n.n) = n
⇒ n = 5 gilt nicht nur für 5.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos