Hallo :-)
Die beiden Werte \(15m\) und \(8m\) scheinen wohl die gemessenen Werte der Höhe bzw. vom Durchmesser zu sein. Nun sei \(\epsilon\) der Messfehler. Dann sind jeweils \(15m=h+\epsilon\) und \(8m=d+\epsilon\), wobei \(h\) und \(d\) die wahren Werte des Silos sind.
Das wahre Volumen ist dann
$$ V(h,d)=\pi \cdot \left(\frac{d}{2}\right)^2\cdot h=\pi \cdot \left(\frac{8m-\epsilon}{2}\right)^2\cdot (15m-\epsilon) $$
und das gemessene Volumen
$$ V':=\pi \cdot \left(\frac{d}{2}\right)^2\cdot h=\pi \cdot \left(\frac{8m}{2}\right)^2\cdot 15m=240\cdot \pi m^3 $$
Den absoluten Messfehler bekomme ich nun durch
$$ \begin{aligned}|V(h,d)-V'|&=\left|\pi \cdot \left(\frac{8m-\epsilon}{2}\right)^2\cdot (15m-\epsilon)-240\cdot \pi m^3\right|\\&=\pi \cdot \left|\left(\frac{8m-\epsilon}{2}\right)^2\cdot (15m-\epsilon)-240 m^3\right|\\&\stackrel{(*)}{<}\pi\cdot |76\cdot \epsilon|\\&=76\cdot \pi \cdot \epsilon <250\cdot \epsilon \stackrel{!}{<}1m^3\\&\Rightarrow \epsilon <0.004m^3\end{aligned}$$
(*) Ich gehe davon aus, dass der Messfehler klein ist und ich den inneren Ausdruck von daher durch ein Taylorpolynom 1.Ordnung (linear) nachoben abschätze. Und das lässt sich leichter lösen, als einem kubischen Term.