Aloha :)
Wir haben es mit dem Vektorraum \(V\) der Polynome bis zum Grad \((n-1)\) zu tun:$$p(x)=\sum\limits_{k=0}^{n-1}a_k x^k=a_0+a_1\cdot x+a_2\cdot x^2+\cdots+a_{n-1}\cdot x^{n-1}$$Die Abbildungsvorschrift ist das Bilden der Ableitung:$$\nabla\colon p(x)\mapsto p'(x)=\sum\limits_{k=1}^{n-1}ka_k\,x^{k-1}=a_1+2a_2\cdot x+3a_3\cdot x^2+\cdots+(n-1)a_{n-1}\cdot x^{n-2}$$
Die einzigen Polynome, die auf \(0\) abgebildet werden, sind diejenigen, für die alle \(a_1,a_2,\ldots,a_{n-1}\) gemeinsam verschwinden. Daher sind genau alle Polynome der Form \(p(x)=a_0\) Elemente des Kerns. Eine Basis des Kerns ist also:$$\operatorname{kernel}(\nabla)=(1;\underbrace{0\,;0\,;\cdots;0}_{\text{(n-1) Nullen}})^T$$