Hallo Bianca,
Mir ist klar das 1-1= 0 aber wie kommst du dann auf die Summen (1)+(2+1)+(3+2+1)? Ich rechne hier i=1 → 1-0+1-0+1-0 etc.
An dieser Stelle ist der Index \(i\) bereits 'eingebaut'$$\sum\limits_{j=0}^{0}(1-j) + \sum\limits_{j=0}^{1}(2-j) + \sum\limits_{j=0}^{2}(3-j)$$D.h. ab hier gib es kein \(i=0\) mehr.
Der erste Summand in der Reihe ist eine Summe mit nur einem Summanden, da \(j\) mit \(j={\color{red}0}\) (dem Startwert) beginnt, was aber gleichzeitig das Ende ist$$\sum\limits_{j=0}^{0}(1-j) = 1- (j={\color{red}0}) = 1$$Beim zweiten Summanden läuft \(j\) von \(j={\color{red}0}\) bis \(j={\color{red}1}\). Also zwei Summanden:$$\sum\limits_{j=0}^{1}(2-j) = (2- {\color{red}0}) + (2-{\color{red}1}) = 2 +1$$
Der dritte Summand in der ersten Summe lautet$$\sum\limits_{j=0}^2(3-j)$$das bedeutet, dass der Index \(j\) von \(0\) bis \(2\) läuft. Also das, was hinter dem Summenzeichen steht, gibt es für \(j={\color{red}0}\), \(j={\color{red}1}\) und \(j={\color{red}2}\). Folglich$$\begin{aligned}\sum\limits_{j=0}^2(3-j)&=(3-{\color{red}0}) + (3-{\color{red}1})+(3-{\color{red}2})\\&=3+2+1\end{aligned}$$