Aloha :)
In der Umformung deiner Rechnung ist kein Fehler.
Allerdings frage ich mich, von was denn$$\vec m\coloneqq\frac12\overrightarrow{BC}+\frac12\overrightarrow{AC}=\frac12\left(\overrightarrow{BC}+\overrightarrow{AC}\right)$$die Mitte sein soll? Du hast den Vektor \(\overrightarrow{BC}\) mit Anfangspunkt \(B\) und Endpunkt \(C\). An diesen hängst du den Vektor \(\overrightarrow{AC}\) mit Anfangspunkt \(A\) und Endpunkt \(C\) an. Das macht keinen Sinn.
Du möchtest vermutlich von \(B\) nach \(C\) und dann von \(C\) nach \(A\) gehen, das wäre dann:$$\vec m\coloneqq\frac12\overrightarrow{BC}+\frac12\overrightarrow{CA}=\frac12\overrightarrow{BA}=\frac{\vec a-\vec b}{2}$$