Aufgabe:
Es sei f eine in [-1,1] genügend oft differenzierbare Funktion und
Q(f) : =α1f(x1)+α2f(x2)
Mit der Formel soll ich nun eine Näherung für
∫12lnxdx
bestimmen.
Problem/Ansatz:
Meine Formel habe ich für das Intervall [-1,1] schon erfolgreich zu Q(f)=f(−31)+f(31) bestimmt.
Wie kann ich die Formel nun am einfachsten auf das Intervall [1,2] transformieren?