Aloha :)
Du musst die 3 Koordinaten auf den Hauptnenner bringen und kannst dann den gemeinsamen Faktor vor den Vektor ziehen:
$$\vec a=\left(\begin{array}{r}\frac23\\[1ex]-1\\[1ex]0,5\end{array}\right)=\left(\begin{array}{r}\frac23\\[1ex]-1\\[1ex]\frac12\end{array}\right)=\left(\begin{array}{r}\frac46\\[1ex]-\frac66\\[1ex]\frac36\end{array}\right)=\frac16\left(\begin{array}{r}4\\-6\\3\end{array}\right)$$
$$\vec a=\left(\begin{array}{r}-4\\[0.5ex]-0,75\\[0.5ex]\frac13\end{array}\right)=\left(\begin{array}{r}-4\\[1ex]-\frac34\\[1ex]\frac13\end{array}\right)=\left(\begin{array}{r}-\frac{48}{12}\\[1ex]-\frac{9}{12}\\[1ex]\frac{4}{12}\end{array}\right)=\frac{1}{12}\left(\begin{array}{r}-48\\-9\\4\end{array}\right)$$
$$\vec a=\left(\begin{array}{r}18\\[0.5ex]-12\\[0.5ex]24\end{array}\right)=\left(\begin{array}{c}6\cdot3\\[1ex]6\cdot(-2)\\[1ex]6\cdot4\end{array}\right)=6\left(\begin{array}{r}3\\-2\\4\end{array}\right)$$
$$\vec a=\left(\begin{array}{r}-0,5\\[0.5ex]20\\[0.5ex]\frac46\end{array}\right)=\left(\begin{array}{r}-\frac12\\[1ex]20\\[1ex]\frac23\end{array}\right)=\left(\begin{array}{r}-\frac36\\[1ex]\frac{120}{6}\\[1ex]\frac{4}{6}\end{array}\right)=\frac{1}{6}\left(\begin{array}{r}-3\\120\\4\end{array}\right)$$