Aufgabe:
Schnittgerade der Ebenen E1 und E2 bestimmen.
E1:\( \vec{x} \) = \( \begin{pmatrix} 4\\2\\7 \end{pmatrix} \) + λ \( \begin{pmatrix} 0\\3\\4 \end{pmatrix} \) + μ \( \begin{pmatrix} 1\\2\\2 \end{pmatrix} \)
E2:\( \vec{x} \) = \( \begin{pmatrix} 1\\5\\-2 \end{pmatrix} \) + ω \( \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \) + η \( \begin{pmatrix} 2\\7\\-1 \end{pmatrix} \)
Problem/Ansatz:
Beim Gleichsetzen der beiden Ebenen entsteht ein LGS mit 4 Unbekannten und 3 Gleichungen. Durch die üblichen bekannten Verfahren eliminiere ich λ und μ. Ich erhalte -8ω - 9η = -8. Durch Umformen und dividieren durch -8ω erhalte ich ω = -1,125η + 1.
Ich setze ω in E2 ein um die Gleichung der Schnittgeraden von E1 und E2 zu erhalten:
g:\( \vec{x} \) = \( \begin{pmatrix} 6\\1\\4 \end{pmatrix} \) + η \( \begin{pmatrix} -4,875\\-1,625\\-1,625 \end{pmatrix} \)
Die Lösung im Anhang lautet aber:
g:\( \vec{x} \) = \( \begin{pmatrix} 5\\1\\5 \end{pmatrix} \) + η \( \begin{pmatrix} 22\\23\\16 \end{pmatrix} \)
Die Nutzung eines Online-Ebenenrechners hat (leider) auch zu g:\( \vec{x} \) = \( \begin{pmatrix} 6\\1\\4 \end{pmatrix} \) + η \( \begin{pmatrix} -4,875\\-1,625\\-1,625 \end{pmatrix} \) geführt.
Gleiches passiert mir auch bei weiteren Aufgaben der gleichen Art. Ich habe das Gefühl, dass ich das LGS mit 3 Gleichungen und 4 Unbekannten falsch behandle. Kann aber den Fehler nicht erkennen. Sowohl mittels Gauß, als auch den anderen üblichen Techniken für die Lösung eines LGS komme ich auf dieses Ergebnis. Es ist ausschließlich die Verwendung der Parameterform von E1 und E2 gefragt.
Ich habe eine Woche lang YT-Videos und Erklärungen zu dem Thema rauf und runter studiert und kann den springenden Punkt nicht finden. Ich bin Fernschülerin und kann sonst leider niemanden so einfach und direkt fragen. Die Beispielaufgaben in meinem Übungsbuch sind leider komplett ohne Rechenweg, so auch die Lösungen.
Mir ist auch bekannt, dass die Verwendung von Koordinatenform und Parameterform für die Bestimmung der Schnittgeraden einfacher ist. Möchte aber nicht zu den nächsten Aufgaben mit diesem Inhalt übergehen, ohne diese Verständnislücke hier zu schließen.
Vielen Dank im Voraus!