Aloha :)
Die rekusriv definierte Folge$$a_n=\frac{4a_{n-1}-a_{n-2}}{3}\quad;\quad a_2=\frac49\quad;\quad a_1=\frac13$$hat folgende erste Werte:$$a_1=\frac13\quad;\quad a_2=\frac49\quad;\quad a_3=\frac{13}{27}\quad;\quad a_4=\frac{40}{81}\quad;\quad a_5=\frac{121}{243}\quad;\quad a_6=\frac{364}{729}$$
In den Nennern der \(a_n\) finden wir offensichtlich \(3^n\). Wenn man die Zähler verdoppelt, sind sie um \(1\) kleiner als die Nenner. Daher vermuten wir folgenden geschlossenen Ausdruck:$$a_n=\frac{\frac12\left(3^n-1\right)}{3^n}=\frac{3^n-1}{2\cdot3^n}\quad\text{für }n\in\mathbb N$$
Wir beweisen die Gültigkeit durch vollständige Induktion.
1) Verankerung bei \(n=1\) und \(n=2\):$$a_1=\frac{3^1-1}{2\cdot3^1}=\frac26=\frac13\quad\checkmark\quad;\quad a_2=\frac{3^2-1}{2\cdot3^2}=\frac{8}{18}=\frac49\quad\checkmark$$
2) Induktionsschritt von \((n-2)\) und \((n-1)\) auf \(n\):
$$a_n=\frac{4a_{n-1}-a_{n-2}}{3}=\frac{4\cdot\frac{3^{n-1}-1}{2\cdot3^{n-1}}-\frac{3^{n-2}-1}{2\cdot3^{n-2}}}{3}=4\cdot\frac{3^{n-1}-1}{2\cdot3^{n-1}\cdot3}-\frac{3^{n-2}-1}{2\cdot3^{n-2}\cdot3}$$$$\phantom{a_n}=4\cdot\frac{3^{n-1}-1}{2\cdot3^n}-\frac{3^{n-2}-1}{2\cdot3^{n-1}}=\frac{4\cdot(3^{n-1}-1)}{2\cdot3^n}-\frac{3\cdot(3^{n-2}-1)}{2\cdot3^n}$$$$\phantom{a_n}=\frac{4\cdot3^{n-1}-4-3\cdot3^{n-2}+3}{2\cdot3^n}=\frac{4\cdot3^{n-1}-1-3^{n-1}}{2\cdot3^n}=\frac{3\cdot3^{n-1}-1}{2\cdot3^n}=\frac{3^n-1}{2\cdot3^n}$$