Aloha :)
Die Umkehrfunktion des natürlichen Logarithmus \(\ln(x)\) ist die Exponentialfunktion \(e^{x}\). Das heißt, die beiden heben ihre Wirkung gegenseitig auf:$$e^{\ln(x)}=x\quad;\quad \ln(e^x)=x$$
Damit kannst du die Gleichung wie folgt lösen:$$\left.0,8\frac{\ln(x+1)}{\ln(2)}=1,34\quad\right|\colon0,8$$$$\left.\frac{\ln(x+1)}{\ln(2)}=1,675\quad\right|\cdot\ln(2)$$$$\left.\ln(x+1)=1,675\cdot\ln(2)\quad\right|e^{\cdots}$$$$\left.e^{\ln(x+1)}=e^{1,675\cdot\ln(2)}\quad\right|e^{\ln(x+1)}=x+1\text{ , vergleiche Einleitung von oben}$$$$\left.x+1=e^{1,675\cdot\ln(2)}\quad\right|-1$$$$\left.x=e^{1,675\cdot\ln(2)}-1\quad\right|\text{Mit Taschenrechner ausrechnen}$$$$x\approx2,19319\ldots$$