SIN(2·α)
= SIN(α + α)
= SIN(α)·COS(α) + COS(α)·SIN(α)
= 2·SIN(α)·COS(α)
COS(2·α)
= COS(α + α)
= COS(α)·COS(α) - SIN(α)·SIN(α)
= COS(α)^2 - SIN(α)^2
= COS(α)^2 - (1 - COS(α)^2)
= 2·COS(α)^2 - 1
Berechnen kannst du sicher selber oder?
COS(3·α)
= COS(2·α + α)
= COS(2·α)·COS(α) - SIN(2·α)·SIN(α)
= (2·COS(α)^2 - 1)·COS(α) - (2·SIN(α)·COS(α))·SIN(α)
= 2·COS(α)^3 - COS(α) - 2·SIN(α)^2·COS(α)
= 2·COS(α)^3 - COS(α) - 2·(1 - COS(α)^2)·COS(α)
= 2·COS(α)^3 - COS(α) - (2·COS(α) - 2·COS(α)^3)
= 2·COS(α)^3 - COS(α) - 2·COS(α) + 2·COS(α)^3
= 4·COS(α)^3 - 3·COS(α)