Aloha :)
Gegeben ist uns die Funktion:\(\quad f(x)=\frac{1+x^2}{1-x^2}\)
zu a) Nullstellen eines Bruches findest du immer an den Stellen, bei denen der Zähler \(=0\) und der Nenner \(\ne0\) ist. Weil eine Quadratzahl nie negativ sein kann, ist \((x^2\ge0)\) und daher der Zähler \((1+x^2\ge1)\). Es gibt also keine Stelle \(x\), an der der Zähler \(=0\) ist. Daher hat die Funktion keine Nullstellen.
zu b) Über das Krümmungsverhalten einer Funktion gibt das Vorzeichen der zweiten Ableitung Auskunft. Da eine Konstante beim Ableiten verschwindet, können wir vor dem Ableiten eine beliebige Konstante zu der Funktion addieren oder subtrahieren, ohne dass sich die Ableitung ändert. Für uns wird dadurch die Rechnung einfacher:$$f'(x)=\left(f(x)+1\right)'=\left(\frac{1+x^2}{1-x^2}+\frac{1-x^2}{1-x^2}\right)'=\left(\frac{2}{1-x^2}\right)'=\frac{4x}{(1-x^2)^2}$$$$f''(x)=\left(\frac{\overbrace{4x}^{u}}{\underbrace{(1-x^2)^2}_{v}}\right)'=\frac{\overbrace{4}^{u'}\cdot\overbrace{(1-x^2)^2}^{v}-\overbrace{4x}^{u}\cdot\overbrace{(2(1-x^2)\cdot(-2x))}^{v'}}{\underbrace{(1-x^2)^4}_{v^2}}$$$$\phantom{f''(x)}=\frac{4(1-x^2)+16x^2}{(1-x^2)^3}=\frac{4+12x^2}{(1-x^2)^3}$$
Der Zähler ist für alle \(x\)-Werte \(\ge4\), also sicher positiv. Der Nenner ist positiv für \(|x|<1\) und negativ für \(|x|>1\). Daher gilt für das Krümmungsverhalten:$$|x|<1\implies f''(x)>0\implies\text{linksgekrümmt (konvex)}$$$$|x|>1\implies f''(x)<0\implies\text{rechtsgekrümmt (konkav)}$$
~plot~ (1+x^2)/(1-x^2) ~plot~