Aufgabe:
Entscheiden Sie, ob die angegebenen reellen Folgen \( \left(a_{n}\right)_{n \in \mathbb{N}} \) jeweils (mindestens) einen Häufungswert besitze
\( a_{n}=\left\{\begin{array}{ll}\frac{1}{n} & , n \text { gerade } \\ -n & , n \text { ungerade }\end{array}\right. \)
--------------------
\( a_{n}=\frac{n^{2}}{\pi}-\left\lfloor\frac{n^{2}}{\pi}\right\rfloor \), wobei \( \lfloor\cdot\rfloor \)
die Gaußklammern
bezeichnen
-------------------
\( a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right) \)
-------------------
\( a_{n}=\cos (n) \)