Beweisen oder widerlegen Sie die folgende Aussage: Die Lösungsmenge der Gleichung
\( 2 x+3 y=0 \)
ist eine Gerade in \( \mathbb{R}^{2} \).
Hinweis: Prüfen Sie als erstes, ob \( 0 \in L \) ist. Wenn ja, ist es entweder keine Gerade oder eine Gerade durch 0 . Wenn es eine Gerade durch 0 ist, ist sie durch eine zweite Lösung ungleich 0 festgelegt. Also wählen Sie sich eine weitere Lösung aus, indem Sie einen speziellen Wert \( x=a \neq 0 \) wählen und damit eine Lösung \( (a, b) \), bekommen. Wenn \( L \) nun eine Gerade ist, so ist \( L \) gleich \( G_{(a, b)}=\{q \cdot(a, b) \mid q \in \mathbb{R}\} \). Nun beutzen Sie das Kriterium für Gleichheit von Mengen \( \left(L=G_{(a, b)}\right. \) dannn und nur dann: \( L \subset G_{(a, b)} \) und \( \left.G_{(a, b)} \subset L\right) \), um die Aussage zu zeigen oder zu widerlegen.