Aloha :)
Hier musst du zwei Rechenregeln kennen.$$E(a\cdot X+b\cdot Y)=a\cdot E(x)+b\cdot E(Y)$$$$V(a\cdot X+b)=a^2\cdot V(x)$$Darin sind \(a,b\in\mathbb R\) reelle Konstanten sowie \(X\) und \(Y\) Zufallsgrößen.
Sei X eine Zufallsgröße, die standardnormalverteilt ist.
Das heißt:\(\quad E(X)=0\quad;\quad V(X)=1\)
Nach den allgemeinen Rechenregeln von oben heißt das:$$E(2X)=2\dot E(X)=2\cdot0=0$$$$V(2X)=2^2\cdot V(X)=4\cdot1=4$$Aussage (a) ist also korrekt\(\quad\checkmark\)
Sei X eine Zufallsgröße, die standardnormalverteilt ist.
Das heißt wieder:\(\quad E(X)=0\quad;\quad V(X)=1\)
Nach den allgemeinen Rechenregeln von oben heißt das:$$E(X-1)=E(X)-1=0-1=-1$$$$V(X-1)=1^2\cdot V(X)=1\cdot1\ne0$$Aussage (b) stimmt also nicht, zwar ist \((E(X-1)=-1)\), aber \((V(X-1)=1\ne0)\).