\( \frac{d}{dx}f(x) = \lim\limits_{h\to0} \frac{f(x+h)-f(x)}{h} = \)
\( \lim\limits_{h\to0} \frac{[(x+h)^2+(x+h)-2]-[x^2+x-2]}{h} = \)
\( \lim\limits_{h\to0} \frac{x^2+2xh+h^2+x+h-2-x^2-x+2}{h} = \)
\( \lim\limits_{h\to0} \frac{2xh+h^2+h}{h} = \lim\limits_{h\to0} \frac{2xh}{h} + \frac{h^2}{h} + \frac{h}{h} = \)
\( 2x + \lim\limits_{h\to0} h + 1 = 2x+1 \) → \( \frac{d}{dx}f(1) = 3 \)