0 Daumen
209 Aufrufe

Aufgabe



Problem/Ansatz:

blob.jpeg

Text erkannt:

Betrachte die geradlinige Bewegung von zwei gleichen Massen, die untereinander und mit einer starren Wand durch Federn verbunden sind und sich ohne Einwirkung anderer Kräfte horizontal reibungslos bewegen können.

Die Massen seien beide gleich 1, die Federkonstanten seien 3 und 2 . Ferner seien \( u_{1} \) und \( u_{2} \) die horizontalen Abweichungen der beiden Massen von der Ruhelage. Die Regeln der Mechanik ergeben, dass die Bewegungen des Systems durch die Lösungen des folgenden Systems von zwei Differentialgleichungen 2. Ordnung beschrieben werden:
\( u_{1}^{\prime \prime}=-5 u_{1}+2 u_{2}, \quad u_{2}^{\prime \prime}=2 u_{1}-2 u_{2} . \)
i) Zeige: Der Lösungsansatz \( u_{1}=x_{1} \cos \omega t, u_{2}=x_{2} \cos \omega t \) fihrt auf ein homogenes System von 2 linearen Gleichungen für die zwei Unbekannten \( x_{1}, x_{2} \), welches als Parameter die noch zu bestimmende Eigenfrequenz \( \omega \) enthält.
ii) Bestimme die \( \omega \), für die dieses System eine nichttriviale Lösung hat.
iii) Bestimme die Lösungen für \( u_{1} \) und \( u_{2} \).
iv) Führe die analogen Überlegungen durch für \( u_{i}=x_{i} \sin \omega t \).
v) Beweise, dass alle Linearkombinationen der so erhaltenen Lösungen des Differentialgleichungssystems wieder Lösungen sind.
(Bemerkung: Man kann zeigen, dass damit alle Lösungen gegeben sind. Das Beispiel zeigt, wie Schwingungsprobleme auf das Eigenwertproblem führen: die \( \omega^{2} \) sind die Eigenwerte.)

Kann mir da jemand helfen?

Bin ziemlich überfordert mit der Aufgabe...

Avatar von

1 Antwort

0 Daumen

Hallo

ieigentlich ist die Antwort auf deine Frage einfach JA

aber ich bin nett, x1,x2 sind Amplituden also feste Zahlen, also einfach u1 und u2 differenzieren und in das Dgl system einsetzen, um nachzuweisen, dass es erfüllt ist. später (oder gleich) dasselbe mit iv

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community