Aufgabe:
Sei u : R2 => R eine stetige und in Inneren der Einheitskreisscheibe harmonische Funktion. In Polarkoordinaten erfüllt u auf dem Rand mit r = 1: $$u(r,\phi)a = 3\phi^2 $$ für $$-\pi <= \phi <= \pi$$,
Dann ist der Wert von u im Mittelpunkt also bei r= 0:= ?
Das Ergebnis ist $$\pi^2$$:
Problem/Ansatz:
Ich komme nicht auf das Ergebnis, also ich habe mir gedacht es muss irgendiwe etwas mit dem Mittelwertsatz zutun haben bzw polarkoordinaten sind ja $$ z= r*e^i\phi $$, aber komme beim besten grübeln nicht dahinter!