Hallo,
es gilt \( F_Y(t) = P(Y \leq t) = P(\max(X_1,\dots,X_n) \leq t) = P(X_1 \leq t, \dots, X_n \leq t) = P(X_1 \leq t)\cdot\,\dots\, \cdot P(X_n\leq t) = \prod_{i=1}^{n}F_{X_i}(t) \) und
\( F_Z(t) = P(Z \leq t) = 1 - P(Z>t) = 1 - P(\min(X_1,\dots,X_n) > t) = 1 - P(X_1 >t, \dots, X_n > t) = 1 - \left(P(X_1 >t)\cdot\,\dots\, \cdot P(X_n > t) \right) =1 - \prod_{i=1}^{n} (1-P(X_i \leq t)) =1 - \prod_{i=1}^{n}(1-F_{X_i}(t)) \)