Hab's doch noch gefunden :-)
\(\small DistGK(r, \beta_A, \lambda_A, \beta_B, \lambda_B) \, := \, r \; \operatorname{cos⁻^1} \left( \operatorname{sin} \left( \beta_A \right) \; \operatorname{sin} \left( \beta_B \right) + \operatorname{cos} \left( \beta_A \right) \; \operatorname{cos} \left( \beta_B \right) \; \operatorname{cos} \left( \lambda_B - \lambda_A \right) \right)\)
\(\small Kurs{\alpha}AB(\phi_{A}, \lambda_{A}, \phi_{B}, \lambda_{B}) \, := \, \frac{\operatorname{cos} \left( \phi_{A} \right) \; \operatorname{sin} \left( \phi_{B} \right) - \operatorname{cos} \left( \phi_{B} \right) \; \operatorname{cos} \left( \lambda_{A} - \lambda_{B} \right) \; \operatorname{sin} \left( \phi_{A} \right)}{\sqrt{-\left(\operatorname{sin} \left( \phi_{A} \right) \; \operatorname{sin} \left( \phi_{B} \right) + \operatorname{cos} \left( \phi_{A} \right) \; \operatorname{cos} \left( \phi_{B} \right) \; \operatorname{cos} \left( \lambda_{A} - \lambda_{B} \right) \right)^{2} + 1}} \)
DistGK(6371,40.71667°, -76.33333°, 0°, -31.65°)=6381.598
acosd(KursαAB( 40.71667°, -76.33333°, 0°, -31.65°))=123.4076°
KursαAB(40.71667°, -76.33333°, 0°, -31.65°)=KursαAB( (40.71667)°, (-76.33333)°, -(32+42/60 +35/60^2)°,a)
\(\small -0.55059 = \frac{-0.54887 \; \operatorname{cos} \left( -a - 1.33227 \right) - 0.40958}{\sqrt{-0.40672 \; \operatorname{cos} ^{2}\left( -a - 1.33227 \right) + 0.44962 \; \operatorname{cos} \left( -a - 1.33227 \right) + 0.87574}}\)
<== cos(-a - 1.33227) = x ==>
==> a={-2.66454, 0.00000}