Aloha :)
Der binomische Lehrsatz lautet:$$(a+b)^n=\sum\limits_{i=0}^n\binom{n}{i}a^{n-i}b^i$$Speziell für \(a=1\) und \(b=1\) erhalten wir:$$2^n=(1+1)^n=\sum\limits_{i=0}^n\binom{n}{i}\cdot1^{n-i}\cdot1^i=\sum\limits_{i=0}^n\binom{n}{i}$$Für \(n=2k\) folgt daraus:$$2^{2k}=\sum\limits_{i=0}^{2k}\binom{2k}{i}=\binom{2k}{0}+\ldots+\binom{2k}{k-1}+\binom{2k}{k}+\binom{2k}{k+1}+\ldots\binom{2k}{2k}\ge\binom{2k}{k}$$In den Summanden ist der Term \(\binom{2k}{k}\) enthalten. Wenn wir alle anderen Summanden weglassen, erhalten wir die gezeigte Abschätzung. Wegen \(2^{2k}=(2^2)^k=4^k\) gilt also:$$\binom{2k}{k}\le 4^k\quad\text{für alle }k\in\mathbb N_0$$
Bilden wir die Kehrwerte, können wir folgende Abschätzung treffen:$$\frac{1}{\binom{2k}{k}}\ge\frac{1}{4^k}\quad\implies\quad a_k\coloneqq\frac{8^k}{\binom{2k}{k}}\ge\frac{8^k}{4^k}=\left(\frac84\right)^k=2^k\to\infty$$
Da also \((a_k)\) keine Nullfolge ist, divergiert \(\sum\limits_{k=1}^\infty(-1)^k\,a_k\).