Aloha :)
Das linke Ende des Stabes liege bei \(L(x_1|x_1^2)\) und das rechte Ende bei \(R(x_2|x_2^2)\).
Für den Schwerpunkt \(S\) des Stabes gilt dann:$$\vec S=\frac{\vec L+\vec R}{2}=\frac12\binom{x_1+x_2}{x_1^2+x_2^2}\quad\implies\quad S\left(\frac{x_1+x_2}{2}\bigg|\frac{x_1^2+x_2^2}{2}\right)$$
Die Nebenbedingung ist der konstante Abstand \(2\ell\) der beiden Punkte \(L\) und \(R\):$$(2\ell)^2=\left\|\binom{x_2}{x_2^2}-\binom{x_1}{x_1^2}\right\|^2=(x_2-x_1)^2+(x_2^2-x_1^2)^2$$
Gesucht sind die lokaken Extrema der \(S_2\)-Koordinate unter dieser Nebenbedingung:$$y(x_1;x_2)=\frac{x_1^2+x_2^2}{2}\to\text{Extrema}\quad;\quad g(x_1;x_2)=(x_2-x_1)^2+(x_2^2-x_1^2)^2\stackrel!=4\ell^2$$
Nach Lagrange muss im Extremum der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller Nebenbedingungen sein. Da wir hier nur eine Nebenbedingung haben, müssen die beiden Gradienten kollinear sein:$$\operatorname{grad}y(x_1;x_2)=\lambda\,\operatorname{grad}g(x_1;y_1)\implies$$$$\binom{x_1}{x_2}=\lambda\binom{-2(x_2-x_1)-4x_1(x_2^2-x_1^2)}{2(x_2-x_1)+4x_2(x_2^2-x_1^2)}\implies$$$$\binom{x_1}{x_2}=\lambda\binom{4x_1^3-4x_1x_2^2+2x_1-2x_2}{4x_2^3-4x_1^2x_2-2x_1+2x_2}$$
Da die beiden Gradienten kollinear sein müssen, ist die von ihnen aufgespannte 2-dimensionale Fläche gleich Null, das heißt, ihre Determinante muss Null sein:$$0\stackrel!=\begin{vmatrix}x_1 & 4x_1^3-4x_1x_2^2+2x_1-2x_2\\x_2 & 4x_2^3-4x_1^2x_2-2x_1+2x_2\end{vmatrix}$$$$\phantom 0=(4x_1x_2^3-4x_1^3x_2-2x_1^2+\cancel{2x_1x_2})-(4x_1^3x_2-4x_1x_2^3+\cancel{2x_1x_2}-2x_2^2)$$$$\phantom 0=8x_1x_2^3-8x_1^3x_2-2x_1^2+2x_2^2=8x_1x_2(x_2^2-x_1^2)+2(x_2^2-x_1^2)$$$$\phantom0=(8x_1x_2+2)(x_2^2-x_1^2)=2(4x_1x_2+1)(x_2+x_1)(x_2-x_1)\implies$$$$x_2=-x_1\quad;\quad \cancel{(x_2=x_1)}\quad;\quad 4x_1x_2=-1$$Der Fall \(x_2=x_1\) scheidet aus, da die beiden Endpunkte des Stabes nicht an derselben Stelle liegen können \((\ell>0)\).
Wir setzen die Langrange-Bedingungen in die Nebenbedingung \(g(x_1;x_2)\) ein:
1. Fall: \(x_2=-x_1\)$$4\ell^2=g(x_1;x_2)=g(x_1;-x_1)=4x_1^2\implies x_1^2=\ell^2\stackrel{(x_2>x_1)}{\implies}x_1=-\ell\;\land\;x_2=+\ell\implies$$$$y(-\ell;\ell)=\frac{\ell^2+\ell^2}{2}=\ell^2\implies S\left(0\big|\ell^2\right)$$
2. Fall: \(4x_1x_2=-1\)$$4\ell^2=g(x_1;x_2)=(x_2-x_1)^2+(x_2^2-x_1^2)^2=\left(-\frac{1}{4x_1}-x_1\right)^2+\left(\frac{1}{16x_1^2}-x_1^2\right)^2$$$$\phantom{4\ell^2}=\frac{1}{16x_1^2}+\frac12+x_1^2+\frac{1}{256x_1^4}-\frac18+x_1^4=\frac{16x_1^2+96x_1^4+256x_1^6+1+256x_1^8}{256x_1^4}$$$$\phantom{4\ell^2}=\frac{4(4x_1^2)+6(4x_1^2)^2+4(4x_1)^3+1+(4x_1^2)^4}{256x_1^4}=\frac{(4x_1^2+1)^4}{256x_1^4}=\left(\frac{4x_1^2+1}{4x_1}\right)^4$$$$\phantom{4\ell^2}=\left(x_1-\left(-\frac{1}{4x_1}\right)\right)^4=(x_1-x_2)^4\quad\implies\quad 2\ell=(x_1-x_2)^2$$
Daraus erhalten wir die Koordinaten der extremalen Schwerpunkte:$$x_S=\frac{x_1+x_2}{2}=\frac{\pm\sqrt{(x_1+x_2)^2}}{2}=\frac{\pm\sqrt{(x_1-x_2)^2+4x_1x_2}}{2}=\frac{\pm\sqrt{2\ell-1}}{2}$$$$y_S=\frac{x_1^2+x_2^2}{2}=\frac{(x_1-x_2)^2+2x_1x_2}{2}=\frac{2\ell-\frac12}{2}=\ell-\frac14$$
Zusammenfassung:
1. Fall: \(\ell\le\frac12\)
Bei \(S(0|\ell^2)\) liegt ein globales Minimum vor. Es gibt keine weiteren Extrema.
2. Fall: \(\ell>\frac12\)
Wegen \(0<(\ell-\frac12)^2=\ell^2-\ell+\frac14\) ist \(\ell^2>\ell-\frac14\) sodass gilt:
Bei \(S(0|\ell^2)\) liegt ein lokales Maximum vor.
Bei \(S\left(\pm\frac{\sqrt{2\ell-1}}{2}\big|\ell-\frac14\right)\) liegen globale Minima vor.