Aloha :)
$$F=\int\limits_{x=0}^B\;\int\limits_{z=0}^H\rho_Wg\cdot(H+h_1-z)\,dx\,dz$$
Die konstanten Faktoren \(\rho_Wg\) kannst du vor die Integrale ziehen. Weiter fällt auf, dass in dem Integranden überhaupt kein \(x\) auftaucht, sodass du das Intergral über \(dx\) separieren kannst:$$F=\rho_Wg\cdot\int\limits_{x=0}^Bdx\cdot\int\limits_{z=0}^H(H+h_1-z)\,dz$$$$\phantom F=\rho_Wg\cdot\left[x\right]_{x=0}^B\cdot\left[Hz+h_1z-\frac{z^2}{2}\right]_{z=0}^H$$$$\phantom F=\rho_Wg\cdot B\cdot\left(H^2+h_1H-\frac{H^2}{2}\right)$$
Das kannst du nun in die Musterlösung umformen:$$F=\rho_Wg\cdot B\cdot\left((H+h_1)\cdot H-\frac{H^2}{2}\right)$$
Oder es vernünftig zu Ende rechnen:$$F=\rho_Wg\cdot B\cdot\left(\frac{H^2}{2}+h_1H\right)=\rho_WgBH\left(\frac{H}{2}+h_1\right)$$