Aufgabe:
(a) Bestimmen Sie den Konvergenzradius der Potentreihe
\( f(z)=\sum \limits_{n=0}^{\infty} 3^{n} z^{2 n} \)sowie für jedes \( z \) aus dem Inneren des Konvergenzkreises den Wert \( f(z) \).
(b) Bestimmen Sie den Konvergenzradius der Potentreihe
\( g(z)=\sum \limits_{n=1}^{\infty} n 3^{n} z^{2 n-1} \)
sowie für jedes \( z \) aus dem Inneren des Konvergenzkreises den Wert \( g(z) \).
Hinweis: Lösen Sie Teil (a), bevor Sie Teil (b) lösen. Es gibt einen Punkt, wenn Sie erklären können, warum diese Reihenfolge sinnvoll ist.
Problem/Ansatz:
könnte mir jemand bei der Aufgabe behilflich sein? Danke!