\(H = H(c,T,g) = \frac{1}{2}g\cdot(-\frac{c}{g}+\sqrt{\frac{c^2}{g^2}+\frac{2c}{g}T})^{2} \)
\(= \frac{1}{2}g\cdot(-\frac{c}{g}+\sqrt{\frac{c^2}{g^2}(1+\frac{2g}{c}T}))^{2} \)
\(= \frac{1}{2}g\cdot(-\frac{c}{g}+\frac{c}{g}\sqrt{(1+\frac{2g}{c}T}))^{2} \)
\(= \frac{1}{2}g\cdot \frac{c^2}{g^2}(-1+\sqrt{(1+\frac{2g}{c}T}))^{2} \)
\(= \frac{c^2}{2g}(-1+\sqrt{(1+\frac{2g}{c}T}))^{2} \)
Jetzt hast du was, das zu \(\sqrt{1+x}=1+\frac{1}{2}x-\frac{1}{8}x^2 \) passt mit
\( x=\frac{2g}{c}T \)