Dann Doku ich mal die Aufgabe, dass sie aus offene Fragen wegkommt:
\(EW \, := \, \left\{2, \frac{-\sqrt{4 \; a - 3} + 1}{2}, \frac{\sqrt{4 \; a - 3} + 1}{2} \right\} \)
\(\scriptsize \left(\begin{array}{rrrr}\lambda=&2&\left(\begin{array}{rrr}0&a&0\\1&-1&-1\\2&1&-2\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\lambda=&\frac{-\sqrt{4 \; a - 3} + 1}{2}&\left(\begin{array}{rrr}2 - \frac{-\sqrt{4 \; a - 3} + 1}{2}&a&0\\1&1 - \frac{-\sqrt{4 \; a - 3} + 1}{2}&-1\\2&1&\frac{-\left(-\sqrt{4 \; a - 3} + 1 \right)}{2}\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\lambda=&\frac{\sqrt{4 \; a - 3} + 1}{2}&\left(\begin{array}{rrr}2 - \frac{\sqrt{4 \; a - 3} + 1}{2}&a&0\\1&1 - \frac{\sqrt{4 \; a - 3} + 1}{2}&-1\\2&1&\frac{-\left(\sqrt{4 \; a - 3} + 1 \right)}{2}\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\end{array}\right)\)
\(\small EV=T \, := \, \left(\begin{array}{rrr}1&-a&a\\0&\frac{1}{2} \; \left(\sqrt{4 \; a - 3} + 3 \right)&\frac{1}{2} \; \left(\sqrt{4 \; a - 3} - 3 \right)\\1&\sqrt{4 \; a - 3}&\sqrt{4 \; a - 3}\\\end{array}\right)\)
D:=T^-1 A T
\(\small D \, := \, \left(\begin{array}{rrr}2&0&0\\0&\frac{1}{2} \; \left(-\sqrt{4 \; a - 3} + 1 \right)&0\\0&0&\frac{1}{2} \; \left(\sqrt{4 \; a - 3} + 1 \right)\\\end{array}\right)\)