0 Daumen
326 Aufrufe

Aufgabe:

a) (2 P.) ist der Begriff „diagonalisierbar“ definiert (eine der äquivalenten Bedingungen reicht)?

02-60-8
1-1617
001-2-1
000-4-4
00022

b) (1 P.) Zwei Eigenwerte von A sind mit dem geschulten Auge sofort erkennbar: welche sind sie, und woran erkannt man sie?
c) (3 P.) Prüfen Sie, ob A diagonalisierbar ist, und bestimmen Sie ggf. eine diagonalisierende Matrix.

Ansatz:

a)Bedingung für Digalonalisierbarkeit: algebraische Vielfachheit = geometrisch VF (war mein erster Gedanke, gibt es ein schnelleres prüfendes Kriterium?)

b) keine Ahnung, kann mir jemand helfen?

c) Mit det(X-A) = 0 und Berechnung der Determinante durch ihre Blockgestallt:

(X-1)*(X2+X-2)*(X2+2X) -> X1/2=1, X3/4=-2, X5=0

dann hab ich D=

10000
01000
00-200
00ß-20
00000

und T=

26-111
10101
010-1-1
000-2-2
00010

in der Aufgabe wird ja die diagonalisierende Matrix verlangt, welche der beiden ist diese? D? Und es gilt ja D= T-1AT, dann muss ich T-1 dazu noch angeben oder?

Avatar von

2 Antworten

0 Daumen

Zu a)

Die von dir angegebene Bedingung ist meines Erachtens hier die effektivste.


Zu b)

Du hast schon die Blockgestalt erkannt.

Block rechts unten:\(\begin{pmatrix} -4 & -4 \\ -2 & -2 \end{pmatrix}\) hat Rang 1 und muss damit einen Eigenwert 0 liefern.

Mittlerer Block: \(\begin{pmatrix} 1 \end{pmatrix}\) liefert offenbar den Eigenwert 1.


zu c)

Eine diagonalisierende Matrix T ist eine Matrix, deren Spalten aus einer Basis von Eigenvektoren bestehen. Du musst also nur T angeben.

Hier zur Überprüfung eine mögliche Lösung.

Avatar von 11 k
0 Daumen

Aloha :)

zu b) Mir ist nicht ganz klar, was mit "geschultem Auge" gemeint ist. Hier kannst du alle Eigenwerte im Kopf bestimmen. Ich schreibe das aber mal ausführlich auf, damit du es detailliert nachvollziehen kannst.

Die Matrix hat eine Blockgestalt:$$A=\left(\begin{array}{rrr|rr}0 & 2 & -6 & 0 & -8\\1 & -1 & 6 & 1 & 7\\0 & 0 & 1 & -2 & -1\\\hline0 & 0 & 0 & -4 & -4\\0 & 0 & 0 & 2 & 2\end{array}\right)$$

Wie betrachten zuerst die Blockmatrix links oben.

Die Spur der Blockmatrix ist gleich \(0\) und ihre Determinante ist \((-2)\). Also ist die Summe der drei Eigenwerte gleich \(0\) und ihr Produkt ist gleich \((-2)\):$$\lambda_1+\lambda_2+\lambda_3=0\quad;\quad\lambda_1\cdot\lambda_2\cdot\lambda_3=-2$$Die Summe der Elemente ist in jeder der drei Spalten gleich \(1\), also ist \(\lambda_1=1\) ein Eigenwert der Blockmatrix. Das heißt für die übrigen beiden Eigenwerte:$$\lambda_2+\lambda_3=-1\quad;\quad\lambda_2\cdot\lambda_3=-2$$Im Kopf findet man \(\lambda_2=1\) und \(\lambda_3=-2\). Damit haben wir 3 Eigenwerte der Matrix \(A\):$$\lambda_1=\lambda_2=1\quad;\quad\lambda_3=-2$$

Nun zur Blockmatrix rechts unten:

In beiden Spalten ist die Summe der Elemente jeweils \((-2)\), also ist \(\lambda_4=-2\) ein Eigenwert der unteren Blockmatrix. Zusätzlich ist die Determinante \(0\), sodass das Produkt der beiden Eigenwerte \(0\) sein muss, also ist \(\lambda_5=0\).

Damit kennen wir die 5 Eigenwerte der Matrix \(A\):$$\lambda_1=\lambda_2=1\quad;\quad\lambda_3=\lambda_4=-2\quad;\quad\lambda_5=0$$

zu a) Hier würde ich mich deiner Argumentation anschließen. Die Matrix ist diagonalisierbar, wenn die geometrische Vielfachheit der Eigenwerte gleich ihrer algebraischen Vielfachheit ist.

zu c) Die diagonalsierende Matrix \(T\) enthalt alle Eigenvektoren als Spalten. Damit die Diagonalisierung hier funktioniert, brauchen wir für \(\lambda_1=\lambda_2=1\) und für \(\lambda_3=\lambda_4=-2\) jeweils 2 Eigenvektoren.

Die Eigenvektoren für \(\lambda_3=\lambda_4=-2\) und \(\lambda_5=0\) habe ich unseren Freund Wolfram berechnen lassen:$$\vec v_3=\begin{pmatrix}1\\0\\-1\\-2\\1\end{pmatrix}\quad;\quad\vec v_4=\begin{pmatrix}-1\\1\\0\\0\\0\end{pmatrix}\quad;\quad\vec v_5=\begin{pmatrix}-6\\0\\1\\0\\0\end{pmatrix}$$

Die Eigenvektoren für \(\lambda_1=\lambda_2=1\) rechnen wir zusammen aus, damit du es mal gesehen hast. Unser Ziel bei den folgenden Umformungen ist es, so viele Spalten wie möglch zu erhalten, die aus genauer einer Eins und sonst nur Nullen bestehen:$$\begin{array}{rrrrr|c|l}x_1 & x_2 & x_3 & x_4 & x_5 & = & \text{Operation}\\\hline0-\lambda & 2 & -6 & 0 & -8 & 0 &\lambda=1\text{ einsetzen}\\1 & -1-\lambda & 6 & 1 & 7 & 0 &\lambda=1\text{ einsetzen}\\0 & 0 & 1-\lambda & -2 & -1 & 0 & \lambda=1\text{ einsetzen}\\0 & 0 & 0 & -4-\lambda & -4 & 0 &\lambda=1\text{ einsetzen}\\0 & 0 & 0 & 2 & 2-\lambda & 0 & \lambda=1\text{ einsetzen}\\\hline-1 & 2 & -6 & 0 & -8 & 0 & +\text{Zeile 2}\\1 & -2 & 6 & 1 & 7 & 0 & \\0 & 0 & 0 & -2 & -1 & 0 &+\text{Zeile 5} \\0 & 0 & 0 & -5 & -4 & 0 & +3\cdot\text{Zeile 5}\\0 & 0 & 0 & 2 & 1 & 0 & \\\hline0 & 0 & 0 & 1 & -1 & 0 & -\text{Zeile 4}\\\pink1 & -2 & 6 & 1 & 7 & 0 & -\text{Zeile 4}\\0 & 0 & 0 & 0 & 0 & 0 & \checkmark\\0 & 0 & 0 & 1 & -1 & 0 & \\0 & 0 & 0 & 2 & 1 & 0 &-2\cdot\text{Zeile 4}\\\hline 0 & 0 & 0 & 0 & 0 & 0 &\checkmark\\\pink1 & -2 & 6 & 0 & 8 & 0 &-\frac83\cdot\text{Zeile 5}\\0 & 0 & 0 & 0 & 0 & 0 & \checkmark\\0 & 0 & 0 & \pink1 & -1 & 0 &+\frac13\cdot\text{Zeile 5}\\0 & 0 & 0 & 0 & 3 & 0 &\div3\\\hline 0 & 0 & 0 & 0 & 0 & 0 &\checkmark\\\pink1 & -2 & 6 & 0 & 0 & 0 &\Rightarrow\pink{x_1}-2x_2+6x_3=0\\0 & 0 & 0 & 0 & 0 & 0 & \checkmark\\0 & 0 & 0 & \pink1 & 0 & 0 &\Rightarrow\pink{x_4}=0\\0 & 0 & 0 & 0 & \pink1 & 0 &\Rightarrow \pink{x_5}=0\end{array}$$

Die Gleichungen stellen wir nach den pinken Variablen um:$$\pink{x_1}=2x_2-6x_3\quad;\quad\pink{x_4}=0\quad;\quad\pink{x_5}=0$$und geben damit alle Lösungen des Gleichungssystems an:$$\vec x=\begin{pmatrix}\pink{x_1}\\x_2\\x_3\\\pink{x_4}\\\pink{x_5}\end{pmatrix}=\begin{pmatrix}2x_2-6x_3\\x_2\\x_3\\0\\0\end{pmatrix}=x_2\cdot\underbrace{\begin{pmatrix}2\\1\\0\\0\\0\end{pmatrix}}_{=\vec v_1}+x_3\cdot\underbrace{\begin{pmatrix}-6\\0\\1\\0\\0\end{pmatrix}}_{=\vec v_2}$$

Damit sind die beiden noch fehlenden Eigenvektoren \(\vec v_1\) und \(\vec v_2\) auch bekannt.

Schreibe die Eigenvektoren nun als Spalten in eine Matrix \(T\) und du hast die diagonalisierende Matrix gefunden.

Avatar von 152 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community