0 Daumen
266 Aufrufe

Aufgabe:

Sie werden von der Stock AG beauftragt, für das laufende Jahr eine Analyse des Lagerbestandes durchzuführen.
Da der Lagerbestand bisher nur zweimal ermittelt wurde, wissen Sie nur, dass zu Beginn des Jahres (also in t = 0) 3502 Stück auf Lager waren und 33 Tage später nur mehr 805 Stück Zusätzlich gehen Sie davon aus, dass der Lagerbestand mit einer konstanten relativen Rate abnimmt. Beantworten Sie folgende Fragen.
(Hinweis: Zur Beantwortung der Teilaufgaben (b) bis (e) ist mit der exakten nominellen Änderungsrate c aus der
Teilaufgabe (a) weiterzurechnen.)
a. Mit welcher nominellen Wachstumsrate (pro Tag, in Prozent, positiv) nimmt der Lagerbestand ab?
4,49
b. Wie groß ist der durchschnittliche Lagerbestand in den ersten 36 Tagen?
c. Wie hoch ist der Lagerbestand nach 58 Tagen?
d. Wie groß ist die momentane Änderungsrate des Lagerbestandes pro Tag zum Zeitpunkt t = 41?
e. Wie viel Stück verlassen durchschnittlich das Lager pro Tag (positiv) im Zeitraum von t = 45 bist = 49 Tagen?


Problem/Ansatz:

Hi, ich komme hier leider nur bis a) hat jemand Ansätze/ Lösungen?

Avatar von

1 Antwort

0 Daumen

Die 33. Wurzel aus (805/3502) ist ca. 0,956425. Der Lagerbestand sinkt also täglich auf 95,6425% des Vortages und damit täglich um 4,3575%.

Avatar von 55 k 🚀

Danke

mein Ergebnis für b) ist 1744,3 und für c) 264,28

stimmt das?

und ich komme bei d nicht weiter

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community