Aufgabe:
Die Oberfläche einer Zeltplane beträgt 200m². Das Volumen soll als Funktion der Höhe h dargestellt werden. Für das volumen gilt: V=2h²l+0,5*2h²l = 3h²l
Für die Oberfläche gilt: Ö=2*2h²+2lh+2h² +2lh√2 O=6h²+2lh(1+√2)
Dies hat zur Fogle: l=(O-6h²)/(2h(1+√2)) l=(100m²-3h²)/(h(1+√2))
Da h und l größer 0 folgt: 100m²-3h² größer 0 (größer soll hier eigentlich das zeichen bedeuten) Aus dieser Ungleichung erhält man die Definitionsmenge für V(h), nämlich h∈ 0m;5,77m (Beides natürlich ausgeschlossen aus dem Intervall).
Überprüfen Sie das:
V(h)=3h²*(100m²-3h²)/(h(1+√2)) = (3/(1+√2))*(100m²h-3h³
V(h)=1,24(100m²h-3h³) h∈ 0m;5,77m
Nun zu meinem Problem:
Kurz vorab, die Angaben für Volumen habe ich der Zeichnung entnommen. Ist aber richtig so, da ich das vom Buch abgeschrieben habe. Ich verstehe als erstes nicht die Aufgabe: Das Volumen soll als Funktion der Höhe h dargestellt werden. Was ist damit gemeint?
Bis zum Auflösen von l komme ich soweit mit, auch wenn ich der Zeichnung nicht entnehmen kann, woher das √2 kommt, aber das ist erstmal egal jetzt. Jetzt mein größtes Problem: Da h und l größer 0 folgt: 100m²-3h² größer 0. Aus dieser Ungleichung erhält man die Definitionsmenge für V(h), nämlich h∈ 0m;5,77m.
Wieso ist das mein Definitionsbereich für V(h) und warum diese Ungleichung überhaupt. Das ist ja der Zähler für den Wert l, wie ich weiter oben erwähnt habe. Und woher weiß ich, dass l und h größer 0 sind. Nächster Punkt, wenn ich jetzt verstanden hätte, dass dies der Definitionsbereich ist, wie komme ich dann auf h∈ 0m;5,77m? Ich habe ja hier zwei Unbekannte und das ist eine quadratische Ungleichung. Wie komme ich dann auf 0 und 5,77?