0 Daumen
149 Aufrufe

Aufgabe:

Text erkannt:

b) Which of the following relations is well-founded? Give a justification of why or why not.
i) A relation that is irreflexive, asymmetric, and finite.
ii) The relation \( R=\{(n-1, n) \mid n \in \mathbb{N}\} \).
iii) The relation \( R R \), where \( \mathrm{R} \) is defined as above.
iv) The partial order on \( \mathbb{N} \times \mathbb{N} \) where \( (a, b) \preceq(c, d) \) iff \( \max (a, b) \leq \max (c, d) \).
v) The divisibility order on \( \mathbb{N} \), i.e. \( R=\{(a, b) \mid a, b \in \mathbb{Z} \) and \( \exists c(c \in \mathbb{Z} \wedge a \cdot c=b)\} \).
vi) The relation \( \left\{(u a b v, u b a v) \mid u, v \in\{a, b, c\}^{*}\right\} \); that is, two words \( w \) and \( w^{\prime} \) are related if we can obtain \( w^{\prime} \) from \( w \) by replacing one occurrence of the subword \( a b \) with \( b a \).



Problem/Ansatz:

kann mir hier wer weiterhelfen ob diese Relationen well founded sind und warum?

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community