\(f(x) = x^4 - x^2- \frac{9}{8} \)
\(x^4 - x^2- \frac{9}{8} =0\)
ohne Substitution:
\(x^4 - 1x^2= \frac{9}{8} \) quadratische Ergänzung:
\(x^4 - 1x^2+(\frac{1}{2})^2= \frac{9}{8}+(\frac{1}{2})^2 \) 2. Binom:
\((x^2 - \frac{1}{2})^2= \frac{11}{8} | ±\sqrt{~~} \)
1.)
\(x^2 - \frac{1}{2}=\sqrt{ \frac{11}{8}} \)
\(x^2 =\frac{1}{2}+\sqrt{ \frac{11}{8}} | ±\sqrt{~~} \)
\(x_1 =\sqrt{\frac{1}{2}+\sqrt{ \frac{11}{8}} }=1,29 \)
\(x_2 =-\sqrt{\frac{1}{2}+\sqrt{ \frac{11}{8}} } =-1,29\)
Das sind Lösungen und Schnittstellen
2.)
\(x^2 - \frac{1}{2}=-\sqrt{ \frac{11}{8}} \)
\(x^2 = \frac{1}{2}-\sqrt{ \frac{11}{8}} | ±\sqrt{~~} \)
\(x_3 =\sqrt{\frac{1}{2}-\sqrt{ \frac{11}{8}} } \)
\(x_4 =-\sqrt{\frac{1}{2}-\sqrt{ \frac{11}{8}} } \)
Das sind Lösungen aber keine Schnittstellen.