Du musst hier zwischen Beweis und Gegenbeispiel unterscheiden: willst du die Richtigkeit einer Aussage zeigen, dann musst du eigentlich alle Bedingungen prüfen. Willst du dagegen zeigen, dass sie falsch ist, dann reicht ein einziges Gegenbeispiel aus.
Da hier nach den Beweise nicht gefragt ist, erscheint die Aufgabe vielleicht etwas undurchsichtig, deswegen führe ich sie einfach.
Du musst also zeigen, dass die drei Bedingungen für eine Relation o erfüllt sind:
i) Reflexivität: a o a
ii) Symmetrie: a o b ⇔ b o a
iii) Transitivität: a o b und b o c ⇒ a o c
Dann heißt die Relation o Äquivalenzrelation.
Zu ~: i) Sei a = (n1, n2, n3) dann gilt: med(a) = n2 und wegen med(a)=med(a) ⇒ a ~ a
ii) Sei a = (n1, n2, n3), b = (m1, m2, m3) und es gelte a ~ b, das heißt: med(a) = med(b) bzw. n2 = m2. Dann gilt auch m2 = n2 bzw. med(b) = med(a) ⇒ b ~ a.
Die Rückrichtung wird analog gezeigt.
iii) Sei a = (n1, n2, n3), b = (m1, m2, m3), c =(k1, k2, k3), und es gelte a ~ b (also n2 = m2) sowie b ~ c (also m2 = k2).
Setzt man nun die beiden Gleichungen gleich ergibt sich n2 = k2 also: a ~ c.
Damit ist ~ eine Äquivalenzrelation.
Zu ≈: Wie bereits da steht verstößt ≈ gegen die dritte Bedingung der Transitivität. Dadurch dass die beiden Bedingungen der Relation mit einem "Oder" verbunden sind, muss nur eine erfüllt sein. Dadurch ist es bei drei Elementen möglich, dass zwischen a und b nur die erste Bedingung erfüllt ist und zwischen b und c nur die zweite. Dann gilt zwar a ~ b und b ~ c aber nicht zwangsläufig a ~ c. Ein Gegenbeispiel ist ja genannt.
Zu ≅:i) Sei a = (n1, n2, n3), dann gilt: max(a) = n3, min(a)=n1 und wegen min(a)=min(a) sowie max(a)=max(a) folgt a ≅ a.
ii) Sei a = (n1, n2, n3), b = (m1, m2, m3) und es gelte a ≅ b, das heißt n1 = m1 und n3 = m3. Dann gilt auch m1 = n1 und m3 = n3 also: b ≅a.
iii) Sei a = (n1, n2, n3), b = (m1, m2, m3), c =(k1, k2, k3), und es gelte a ≅ b (also n1 = m1 und n3=m3) sowie b ≅ c (also m1 = k1 und m3 = k3). Setzt man die jeweils zusammenpassenden Gleichungen gleich, erhält man n1=k1 und n3=k3 also gilt auch a ≅ c.
Also ist ≅eine Äquivalenzrelation.