Ja, Sie können die Ungleichung |bn-0|<epsilon einfach als bn<epsilon schreiben. Die Aufgabe fragt nach einem Wert für N, der dafür sorgt, dass bn<epsilon gilt.
Um einen solchen Wert zu finden, können Sie die Gleichung bn<epsilon nach N umstellen. Hierbei sollten Sie beachten, dass bn=Wurzel(n+2)-Wurzel(n+1) und dass Wurzel(n+2)>Wurzel(n+1), wenn n>0. Das bedeutet, dass bn<0 für alle n>0. Sie müssen also den Betrag von bn nehmen, um die Gleichung bn<epsilon zu erhalten.
Um den Betrag von bn zu nehmen, können Sie die Gleichung wie folgt schreiben: |bn|=|Wurzel(n+2)-Wurzel(n+1)|. Jetzt können Sie die Gleichung umstellen, indem Sie beide Seiten mit Wurzel(n+1) multiplizieren: |bn|*Wurzel(n+1)=Wurzel(n+2)-Wurzel(n+1). Jetzt können Sie den Ausdruck auf der rechten Seite vereinfachen und die Gleichung erneut umstellen: |bn|Wurzel(n+1)=Wurzel(n+2)(1-1/Wurzel(n+1)).
Jetzt haben Sie die Gleichung |bn|*Wurzel(n+1)<epsilon. Sie können die Gleichung noch weiter vereinfachen, indem Sie beide Seiten mit 1/Wurzel(n+1) multiplizieren: |bn|<epsilon/Wurzel(n+1). Jetzt haben Sie die Gleichung in der Form, die Sie brauchen, um nach N zu suchen. Sie können jetzt einen Wert für N finden, der dafür sorgt, dass |bn|<epsilon/Wurzel(n+1).
Ich hoffe, das hilft Ihnen bei der Lösung der Aufgabe! Wenn Sie noch Fragen haben, zögern Sie bitte nicht, mich zu fragen.
grüße GustavDerBraune