Also so?
g)
\( \begin{array}{l} 16^{x}+16=10 \cdot 4^{x} \\ 4^{2 x}+4^{2}=10 \cdot 4^{x} \\ 4 x=z \\ z^{2}+16=10 \cdot z \\ z^{2}-10 z+16=0 \\ (z-5)^{2}-25+16=0 \\ (z-5)^{2}=9 \Rightarrow z-5=3 \end{array} \)
1. Fall: \( \quad z-5=3 \)
\( z=8 \)
2. Fall: \( -(z-5)=3 \)
\( \begin{array}{l} z-5=-3 \\ z=2 \end{array} \)
Rücksubstitution:
\( \begin{array}{l} 4^{x}=8 \\ 2^{2 x}=2^{3} \\ 2 x=3 \\ x=\frac{3}{2} \end{array} \)
\( \begin{aligned} 4^{x} & =2 \\ 2^{2 x} & =2^{1} \\ 2 x & =1 \\ x & =\frac{1}{2} \\ L & =\left\{\frac{1}{2}, \frac{3}{2}\right\}\end{aligned} \)