\(\begin{array}{l} f(x)=-16 x^{3}+15 x^{2}+10 x+1 \text { und } \\ g(x)=-4 x^{3}-9 x^{2}-146 x-119 \end{array} \)
\(d(x)=-16 x^{3}+15 x^{2}+10 x+1-(-4 x^{3}-9 x^{2}-146 x-119)\)
\(d(x)=-16 x^{3}+15 x^{2}+10 x+1+4 x^{3}+9 x^{2}+146 x+119\)
\(d(x)=-12x^{3}+24 x^{2}+156 x+120\)
\( x_{0}=(-2), x_{1}=(-1) \) und \( x_{2}=(5) \)
\(A₁=\int\limits_{-2}^{-1}(-12x^{3}+24 x^{2}+156 x+120)*dx=-3x^4+8x^3+78x^2 +120x\)
\(A₁=[-3*(-1)^4+8*(-1)^3+78*(-1)^2 +120*(-1)]-[-3*(-2)^4+8*(-2)^3+78*(-2)^2 +120*(-2)]=|-13|=13\)
Grenzen von \(x_{1}=(-1) \) und \( x_{2}=(5) \)
\(A₂=[-3*(5) ^4+8*(5) ^3+78*(5) ^2 +120*(5) ]-[-3*(-1) ^4+8*(-1) ^3+78*(-1) ^2 +120*(-1) ]=1728\)
\(A=1728FE+13FE=1741FE\)