Aufgabe:
Sei K(M,r) ein Kreis mit Mittelpunkt M und Radius r > 0. Beweisen Sie, dass eine Gerade g genau dann eine Passante für den Kreis K(M,r) ist, wenn für alle Punkte P auf der Geraden g gilt: |PM| > r.
Problem/Ansatz:
Ich habe mir bereits eine Skizze gemacht, um mir die Aufgabe etwas besser vorstellen zu können, allerdings weiß ich nicht, wie ich das rechnerisch oder so beweisen könnte.
Ich habe überlegt, ob ich mir einen Punkt auf den Kreis suche und diesen dann mit dem Mittelpunkt und einem Punkt auf der Geraden g zu einem Dreieck verbinde. Aber da ich nicht weiß, ob das Dreieck rechtwinklig ist, kann ich kein Pythagoras benutzen.
Hat jemand von euch eine Ahnung, wie man diese Aufgabe lösen könnte?
Danke