$$ \frac{\partial f}{\partial x_k } \| x \| = \frac{\partial f}{\partial x_k} \sqrt{ \sum_{i=1}^n x_i^2 } = \frac{1}{2} \frac{1}{\| x \| } 2 x_i \delta _{ik} = \frac{x_k}{\|x\|} $$ Also $$ \nabla_x \|x\| = \frac{\vec{x}}{\|x\|} $$
$$ \frac{ \partial }{ \partial x_k } \frac{ \partial }{ \partial x_l } \|x\| = \frac{ \partial }{ \partial x_k } \frac{x_l}{\|x\|} = \frac{ \delta_{kl} \|x\| - \frac{x_l x_k }{ \|x\| } } { \|x\|^2} $$ und in Matrixschreibweise
$$ H \left( \|x\| \right) = \frac{1}{\|x\|} \left( I - \frac{x x^T}{\|x\|^2} \right) $$