Ok also mein Ansatz wäre schonmal, dass du dann 1/4 * ∫ Indikatorfunktion von [0,2] (x) * Indik. von [0,2] (t-s) ds
Dann würde ich das Intervall in Abhängigkeit von t schreiben sodass deine Indikatorfunktion nur noch von s abhängt: Dann verändert sich das Intervall von [0,2] zu [t-2,t]. Dann könnte man das Produkt von Zwei Indikatorfunktionen darstellen als Indikatorfunktion von [0,2] ∩ [t-2,t]. Hmm, dann müsste ich überlegen...Theoretisch ist dann der Schnitt [t-2,2] wenn 4≥t≥2, ∅ wenn t>4 oder t<0, [0,t]. wenn 0≤t<2 .
Dann könnte man denke ich diesen beide Fälle unterscheiden, wo das Intervall nicht leer ist und die Grenzen entsprechend ersetzen durch diese Intervallgrenzen und dann relativ einfach Integrieren. PS: Ist nur eine Idee, keine Garantie