\(\dfrac{9}{16} x^2 - \dfrac{4}{25}y^2\)
Dritte binomische Formel:
\(a^2 - b^2 = ...\)
Also \(\dfrac{9}{16} x^2= a^2 \) und \(\dfrac{4}{25} y^2 =b^2\) .
Damit findest du \(a=\dfrac{3}{4}x\) und \(b=\dfrac{2}{5} y^2\).
\(a^2 - b^2 =(a-b)(a+b)\)
a und b einsetzen:
\(\dfrac{9}{16} x^2 - \dfrac{4}{25}y^2=\left(\dfrac{3}{4} x -\dfrac{2}{5}y\right)\left(\dfrac{3}{4} x+\dfrac{2}{5}y\right)\)
:-)