Aufgabe:
Geben Sie eine Bijektion zwischen der Menge der geraden Zahlen G und der Menge der ganzenZahlen ℤ an.
Danke für die Hilfe. ☺
Ich rate mal: G sind die geraden ganzen Zahlen.
Dann ist f:G→ℤ mit f(x) = x:2 so eine Bijektion.
Denn das ist wohldefiniert, weil jeder gerade Zahl
durch 2 teilbar ist,
und injektiv, weil aus x:2 = y:2 ja x=y folgt
und surjektiv, weil es zu jedem y∈ℤ ein x=2*y in G gibt .
Beide Mengen sind abzählbar unendlich.
Jeder ganzen Zahl lässt sich eine gerade ganze Zahl zuordnen.
https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_M%C3%A4chtigkeit_von_Mengen
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos