0 Daumen
318 Aufrufe

Aufgabe:

Weiß jemand wie ich schnell c bestimme, sodass det von A = 0 ist?
Problem/Ansatz:

Aufgabe : \( A=\left[\begin{array}{ccc} 2 & 2 & -1 \\ 4 & 5 & c-5 \\ 2 & 3-c & 3 c-6 \end{array}\right] b=\left(\begin{array}{l} 2 \\ 3 \\ 3 \end{array}\right) \)

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Hallo,

vereinfache die Matrix zuerst durch Addieren und/oder Subtrahieren von Zeilen der Spalten. Dadurch ändert sich ihre Determinante nicht. Z.B. ziehe von der dritten Zeile die erste ab und von der zweiten das Doppelte der ersten:$$A=\left[\begin{array}{ccc} 2 & 2 & -1 \\ 4 & 5 & c-5 \\ 2 & 3-c & 3 c-6 \end{array}\right] \\ A'= \left[\begin{array}{ccc} 2 & 2 & -1 \\ 0 & 1 & c-3 \\ 0 & 1-c & 3 c-5 \end{array}\right]$$und nun musst Du nur noch die 'Nullstelle' der 2x2-Matrix unten rechts berechnen:$$\det(A) = \det(A') = 2(3c-5 - (1-c)(c-3)) \to 0 \\\phantom{=}3c-5-c+3+c^2-3c \\= -2-c+c^2 =0\\\implies c_1=2, \space c_2=-1$$Gruß Werner

Avatar von 49 k
0 Daumen

Löse die Gleichung 30c+60+(4c-20)+(c-12)-(-2c²+16c-30+(24c-48)+(-10))=0.

Avatar von 55 k 🚀

Genau das hatte ich auch raus, bin aber nicht weitergekommen. Könntest du kurz aufschreiben, wie man dann weiter vorgeht?, Danke

Gegenfrage: Du hantiesrst mit Determinanten, kannst aber eine Aufgabe auf erweiteitertem Niveau der Klassenstufe 9?

Term vereinfachen, quadratische Gleichung lösen.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community