0 Daumen
216 Aufrufe

Könnte jemand bitte bei der Aufgabe helfen?D5BF7C00-4F78-4EE9-A00B-695A2B91EE07.jpeg

Text erkannt:

(4) Begründen Sie, dass folgende Funktion einen Fixpunkt besitzt:
\( f:\left([0,1]^{2},\|\cdot\|_{1}\right) \rightarrow\left(\mathbb{R}^{2},\|\cdot\|_{1}\right):[x, y]^{\top} \mapsto\left[\frac{1}{8}(x-y)^{2}, \frac{1}{6} \sin (2 x)+\frac{1}{3}\right]^{\top} . \)

Avatar von

1 Antwort

0 Daumen

Hallo

setze f(x,y)=(x,y) also1.  y=1/6sin(2x)+1/3  und 2. x=1/8(x-y)^2

setze y in 2. ein und zeige dass es eine Lösung bzw die Differenz  Nullstelle hat (mit Zwischenwertsatz)

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community