Aloha :)
Willkommen in der Mathelounge... \o/
Nach Voraussetzung gilt \(a,b\in\mathbb R^+\).
Direkter Beweis:$$a^2<b^2\implies b^2-a^2>0\implies(b-a)\underbrace{(b+a)}_{>0}>0\implies b-a>0\implies a<b$$
Indirekter Beweis: Wir nutzen: \((A\implies B)\Longleftrightarrow(\lnot B\implies\lnot A)\):$$(a\ge b\implies a^2\ge b^2)\implies(\lnot(a^2\ge b^2)\implies\lnot(a\ge b))\implies (a^2<b^2\implies a<b)$$
Beweis durch Widerspruch: Wir nehmen an, dass \(a\ge b\) bzw, \(b-a\le0\) gilt.
$$a^2<b^2\implies b^2-a^2>0\implies(b+a)\underbrace{(b-a)}_{\le0}>0\implies a+b<0\quad\text{Widerspruch}$$Mit der Annahme \(a\ge b\) folgt aus \(a^2<b^2\), dass \(a+b<0\) sein muss, was jedoch im Widerspruch dazu steht, dass \(a,b\in\mathbb R^+\) sind. Also war die Annahme \(a\ge b\) falsch und es muss \(a<b\) gelten.