Aufgabe:
i) Beweisen oder widerlegen Sie die folgenden Aussagen für eine Funktion f : [-1,1] -> R.
a) f stetig in 0 => |f| stetig in 0.
b) |f| stetig in 0 => f stetig in 0.
ii) Sei f : R->R. Zeigen Sie, dass man aus |f(x)-f(y)| <= (kleiner gleich) 17*|x-y|^(1/2) für alle x,y € (Element von) R folgt, dass f stetig ist.
Ich kann nachvollziehen, ob die Aussagen stimmen oder nicht, aber wie beweist/zeigt man es denn?