Scheitelpunkte der Kurvenschar
y = a·x^2 + b·x + c
y = a·(x^2 + b/a·x) + c
y = a·(x^2 + b/a·x + (b/(2·a))^2 - (b/(2·a))^2) + c
y = a·(x^2 + b/a·x + (b/(2·a))^2 - b^2/(4·a^2)) + c
y = a·(x^2 + b/a·x + (b/(2·a))^2) + c - b^2/(4·a)
y = a·(x + b/(2·a))^2 + c - b^2/(4·a)
S(- b/(2·a) | c - b^2/(4·a))
Ortskurve der Scheitelpunkte
x = - b/(2·a) → a = - b/(2·x)
y = c - b^2/(4·a) = c - b^2/(4·(- b/(2·x))) = b/2·x + c
Die Scheitelpunkte liegen auf der Geraden y = b/2·x + c.