Aloha :)
~plot~ x ; 2x-x^2 ; [[-0,1|1,5|-0,10|1,1]] ~plot~
Die beiden Funktionen schneiden sich bei \((0|0)\) und \((1|1)\). Bei der Rotation der Kurve \(y=x\) um die y-Achse entsteht ein Kegel. Dieser hat einen Grundkreis mit dem Radius \(r=1\) und der Höhe \(h=1\). Sein Volumen beträgt daher:$$V_1=\frac13\pi r^2h=\frac\pi3$$
Von diesem Volumen \(V_1\) müssen wir das Volumen \(V_2\) subtrahieren, das durch die Rotation von \(y=2x-x^2\) im Intervall \(x\in[0;1]\) bzw. \(y\in[0;1]\) um die y-Achse entsteht. Bei der Rotation um die y-Achse entstehen Kreise senkrecht zur y-Achse mit Mittelpunkt auf der y-Achse und Radius \(x\). Ihre Fläche beträgt daher \(\pi x^2\). Diese Kreisflächen müssen wir für \(y\in[0;1]\) addieren.
$$V_2=\int\limits_{y=0}^1\pi x^2\,dy=\int\limits_{x=0}^1\pi x^2\,\frac{dy}{dx}\,dx=\int\limits_{x=0}^1\pi x^2(2-2x)\,dx=\pi\left[\frac23x^3-\frac12x^4\right]_{x=0}^1=\frac\pi6$$
Das gesuchte Volumen beträgt daher:$$V=V_1-V_2=\frac\pi3-\frac\pi6=\frac\pi6$$