Hallo,
$$\frac32\cdot\left(\frac23\right)^{-x}=6\cdot3^x$$
$$\frac32\cdot\left(\frac32\right)^{x}=2\cdot3\cdot3^x$$
$$\left(\frac32\right)^{x+1}=2\cdot3^{x+1}~~~~~~|:3^{x+1}$$
$$\left(\frac12\right)^{x+1}=2~~~~~~|\cdot 2^{x+1}$$
$$ 1=2^{x+2}$$
$$x+2=0\Longrightarrow x=-2$$
$$y=6\cdot3^{-2}=\frac69=\frac23$$
\(S(-2|\frac23)\)
:-)