\(\Omega = \mathbb{N}\cap [1,100]\)
\(\mathcal{F} = \mathcal{P}(\Omega)\)
\(\mathbb{P}: \mathcal{F}\to [0,1], E\mapsto\frac{|E|}{|\Omega|}\)
\(X_A: \Omega\to \{0,\ 25,\ 50,\ 100\}, \omega\mapsto\begin{cases}100&\omega=1\\50&\omega=2\\25&\omega=3\\0&\omega >3\end{cases}\)
\(X_B: \Omega\to \{0,\ 25\}, \omega\mapsto\begin{cases}25&13\,|\,\omega\\0&13\nmid\omega\end{cases}\)
\(X_C: \Omega\to \{0,\ 17,5\}, \omega\mapsto\begin{cases}17,5&10\,|\,\omega\\0&10\nmid\omega\end{cases}\)