Aufgabe:
Bestimmen Sie das charakteristische Polynom, die Eigenwerte, das Minimalpolynom und die Haupträume der folgenden Matrix:
\( A:=\left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{array}\right) \in \mathbb{R}^{6 \times 6} . \)
Problem/Ansatz:
Die Matrix ist doch bereits in der Jordanschen Normalform, also kann ich doch die Eigenwerte einfach ablesen, und dann daraus die Polynome machen? Oder muss ich noch was beachten? Und was genau ist ein Hauptraum?