Aloha :)
Die beiden von dir genannten Integrale sollen über die Menge \(B_2\) integriert werden. Dabei handelt es sich um einen Kreis mit Radius \(2\). Diesen Kreis können wir mit einem Ortsvektor \(\vec r\) in Polarkoordinaten abtasten:$$\vec r=\begin{pmatrix}r\cos\varphi\\r\sin\varphi\end{pmatrix}\quad;\quad r\in[0;2]\quad;\quad\varphi\in[0;2\pi]$$
Dabei müssen wir natürlich auch das Flächenelement transformieren:$$\frac{dx\,dy}{dr\,d\varphi}=\left|\begin{array}{rr}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial\varphi}\\[1ex]\frac{\partial y}{\partial r} & \frac{\partial y}{\partial\varphi}\end{array}\right|=\left|\begin{array}{rr}\cos\varphi & -r\sin\varphi\\[1ex]\sin\varphi & r\cos\varphi\end{array}\right|=r\cos^2\varphi+r\sin^2\varphi=r$$Mit \(dx\,dy=r\,dr\,d\varphi\) können wir die integrale nun wie folgt schreiben:
$$I_2=\iint\limits_{B_2}\frac{1}{1+x^2+y^2}\,dx\,dy=\int\limits_{r=0}^2\;\int\limits_{\varphi=0}^{2\pi}\frac{1}{1+r^2}\,r\,dr\,d\varphi=\int\limits_{\varphi=0}^{2\pi}d\varphi\cdot\frac12\int\limits_{r=0}^2\frac{2r}{1+r^2}\,dr$$$$\phantom{I_2}=2\pi\cdot\frac12\left[\ln|1+r^2|\right]_{r=0}^2=\pi\ln(5)$$
$$I_3=\iint\limits_{B_2}xy\,dx\,dy=\int\limits_{r=0}^2\;\int\limits_{\varphi=0}^{2\pi}r^2\cos\varphi\sin\varphi\,r\,dr\,d\varphi=\frac12\underbrace{\int\limits_{\varphi=0}^{2\pi}\sin(2\varphi)\,d\varphi}_{=0}\cdot\int\limits_{r=0}^2r^3\,dr=0$$